CSDN资讯

这里,有作为技术人必须知道的业界大事。

暴雪游戏遭遇AI“实力”坑队友:四处游走,还不参与战斗

640?wx_fmt=gif

640?wx_fmt=gif

作者 | 琥珀

出品 | AI科技大本营(ID: rgznai100)

“打游戏 AI 将完胜人类!?”

抱歉,这个 Flag 还是不要立得太早,尤其是面对我们这种普通的游戏爱好者时。


640?wx_fmt=png

AI 再现智障行为


前不久,在暴雪娱乐的论坛上出现了这样一条帖子:“did-they-make-the-ai-worse?”

640?wx_fmt=jpeg

一位名为“Shady”的玩家指出,“整整 16 分钟,机器人助攻 10 次不到,英雄伤害 10 次不到,就结束了比赛。而且,同样的事情发生不止一次……”在他看来,新版本的《暴风英雄》让 AI 的表现更糟了,尽管它的表现就一直不尽如人意。简直让喜欢玩人机对战的玩家难受。

为了保留证据,这位玩家还专门保存了录播视频,等待官方的回应。

传送门:https://eu.forums.blizzard.com/en/heroes/t/did-they-make-the-ai-worse/1772

(感兴趣的玩家可自行下载尝试)

除了帖子中这位玩家遇到的 AI 四处游走、不参与战斗的情况外,电玩巴士 还总结了这个 AI ”坑友“的其他问题:

示意跟随后,AI 毫无反应或原地满血回城;不跟随情况下疯狂打野,单挑 Boss 自杀;机制触发前己方若人数少于敌方,直接放弃机制回到兵线上; 极度避免团战;漏兵线,不推塔……

据了解,这款出了“AI 乱子”的《风暴英雄》正值“毒蛇抵抗军”新皮肤的上线。

640?wx_fmt=png

尽管,随后涉事方暴雪娱乐表示:开发团队已经知晓该问题,并正进行修复,将于近期上线修正补丁,但显然以上问题并不足以平息接下来玩家对《风暴英雄》人机对战中 AI 的不满。

一个月前在《星际争霸 II》中轻松战胜人类职业选手的 AlphaStar(在 APM 限制为 180 的条件下,以总比分 2:0 分别战胜两位职业人类选手),正是来自与暴雪宣布合作的 DeepMind。早在 2016 年 11 月,DeepMind 就宣布与暴雪在《星际争霸 II》中合作开展机器学习的相关研究。

那么,为何在暴雪的另一款《风暴英雄》的人机游戏中,AI 的表现却可以形容为智障呢?


640?wx_fmt=png

对《风暴英雄》知之者,甚少


先让我们先来了解一件事:

去年年底,暴雪方面宣布,从 2019 年起,将停办《风暴英雄》全球锦标赛与北美宿舍英雄,并同时将部分游戏设计师转移到别的项目中。在此前玩家的口中,该游戏一直有个“风暴要火”的梗,而该消息宣布后直接导致许多战队解散、选手失业,“风暴第一人”韩国职业选手 rich 甚至在 Twitch 上直播了卸载《风暴英雄》的全过程。“风暴”就此凉凉?

640?wx_fmt=png

可能是因为《风暴》从来没火过,所以也不存在凉凉。

相比之下,除了《星际争霸II》,《魔兽世界》、《暗黑破坏神III》、《守望先锋》()等都可以称之为暴雪娱乐的经典之作。

640?wx_fmt=gif

而 2013 年内测、2015 年正式上市的《风暴英雄》从一开始就未能获得玩家的认可,不少媒体认为该游戏过于强调团队协作,让玩家很难拥有英雄个人的游戏体验。

甚至有人当时评论:

640?wx_fmt=png

《风暴英雄》已经进入打 AI 刷子时代,“玩法主要是组队打电脑 AI,不断送死,增加游戏时间(根据游戏时间奖励经验),通常时长 1 小时左右击败电脑,可以获得高额经验。”

这又是机器人的锅?

在玩家眼中,一般将控制 NPC(Non-Player Character)行动/交互/动作等动作背后的因素统称为 AI。实际上,这种 AI 在早期的 2D 时代就有了,例如我们当时玩的单机游戏《吃豆人》、《超级马里奥》,其实就是在对抗机器人。

就以最近的”AlphaStar 虐杀职业星际玩家“事件为案例,少数派 指出,

电子游戏中的 AI 系统,本质上其实是一系列的 if this,then that 的条件语句……实际的情况可能要比这个复杂的多,会出现 if this and this but not this……这种十分精确的条件,这时候电脑自然要对符合条件的指令进行运算,来让这些 NPC 看起来拥有与人类一样的”智慧“,但它并不会进行任何自我学习。

尽管能够进行自我学习的机器学习在科技领域风头正热,但大多数的游戏作品还是采用了”行为树“(Behaviour Trees)这种技术来进行 AI 交互部分的设计。

因此,”AlphaStar“或”AlphaGo“这类与职业玩家进行人机对战的 AI,其实是与传统玩家手中的的游戏 AI 在设计目的性上有很大不同,这也造成了技术上的差异性。

640?wx_fmt=jpeg

图片来源于官网

而在《风暴英雄》这个案例中,则面对更多的是普通玩家。对于他们来讲,可以自行选择新手模式、终极模式等不同难度的游戏。假如选择后者,可能会非常难打,因为这个模式会自动选择职业水平的模板,并不是根据玩家的操作习惯学习。

反之,如果是根据玩家的操作习惯,这个 AI 的水平短时间内会比较低,因为它需要不断地自我学习来提高。显然,这对于追求娱乐的用户体验来讲是不能接受的,普通玩家们希望的是与自己水平相当或更好的对手/队友。

这就存在两点问题:一是,游戏开发商是否在未达到一定学习程度就把 AI 投入了运营,导致用户体验差;二是,这个 AI 是否具备快速的自我学习能力,如果没有,应该提前告知用户,并进行内部 beta 测试和改进。

不管是哪个原因,暴雪娱乐都难逃责任。

另一方面,DeepMind 、OpenAI 等机构一直以来试图通过《星际争霸》、《DOTA2》这样的人机对战,将神经网络在玩游戏的过程中不断训练提升,其目的之一就是开发一套足够好的人工智能系统。

例如,《星际争霸》中的“战争迷雾”机制存在的不完全信息博弈,《DOTA2》中的”五V五“模式蕴含的多智能体连续控制任务等复杂问题,均是研究人员着力提升 AI 水平的方向。

正如一位玩家曾这样描述理想中的 AI:

”风暴(英雄):丢锤子,判断射程,预判下半秒运动轨迹,检索目标与自己之间有无障碍,锤中下一步如何,锤不中下一步如何……“

未来,在普通玩家游戏中,AI 对战人类,胜算几何?仍值得想象。

 热 文 推 荐 

苹果无人驾驶拿 124 个工程师祭天!

“SQL 被低估了!”

网易、苹果纷纷裁员;抖音遭罚 570 万美元;华为三星和解 | 极客头条

程序员如何实现财富自由?

如果中本聪没说错,这场战争美国输定了!

☞《流浪地球》票房:预测10亿却飚50亿 ,数据预测为什么这么难

☞ 暴雪游戏遭遇AI“实力”坑队友:四处游走,还不参与战斗

☞ 神操作!这段代码让程序员躺赚200万?给力!

print_r('点个好看吧!');
var_dump('点个好看吧!');
NSLog(@"点个好看吧!");
System.out.println("点个好看吧!");
console.log("点个好看吧!");
print("点个好看吧!");
printf("点个好看吧!\n");
cout << "点个好看吧!" << endl;
Console.WriteLine("点个好看吧!");
fmt.Println("点个好看吧!");
Response.Write("点个好看吧!");
alert("点个好看吧!")
echo "点个好看吧!"

640?wx_fmt=gif点击阅读原文,输入关键词,即可搜索您想要的 CSDN 文章。

640?wx_fmt=png喜欢就点击“好看”吧!
展开阅读全文

没有更多推荐了,返回首页