小米立 Flag:要做年轻人的第一个深度学习框架

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://csdnnews.blog.csdn.net/article/details/80851401

640?wx_fmt=gif

小米要做移动端最牛叉的深度学习框架。—— 小米崔宝秋

北京时间 6 月 28 日,在第十三届开源中国开源世界高峰论坛上,小米首席架构师、人工智能与云平台副总裁崔宝秋在《小米 AI 时代的开源》的主题演讲中,代表小米正式发布了小米移动端深度学习框架 —— MACE。

640?wx_fmt=jpeg

以下为演讲实录整理:

尊敬的各位嘉宾、各位朋友、各位同行,大家下午好!我叫崔宝秋,在小米负责人工智能与云平台,首先非常想感谢陆主席(编者注:中国开源软件推进联盟名誉主席陆首群教授),在开源上为中国做的杰出贡献,非常荣幸有机会再次跟大家分享开源中国开源世界,我不知道第几次参加了,几乎每年都参加,感谢组委会对小米的厚爱。

在公司我负责这个团队,作为个人介绍,尤其在行业会上,我更愿意介绍自己为一个自由软件的爱好者、信任者、一个开源软件的参与者和管理者,到今天一个开源软件的倡导者。所以今天我想跟大家分享的是——小米在AI时代的开源。过去几年一直在推小米在大数据、云计算方面的开源。今天讲讲在AI时代,小米怎么拥抱开源。


小米和开源有什么关系?

讲起小米,大家会想到小米只是一家智能手机公司,智能手机硬梆梆的和开源有什么关系?首先我想讲,这个认识是完全不对的,小米不仅仅是一家智能手机功能,更多是一家智能设备、互联网公司。用雷总的话讲,是一家以手机智能硬件和 IoT 平台为核心的互联网公司。

作为一个技术人员,我更愿意讲小米是一家大数据公司、一家AI公司。为什么AI在小米如此重要?为什么我们在AI上面投入再多都不为过呢?首先看一下小米有丰富的产品线,我们需要AI赋能,除了手机之外,还有很多智能设备,这些智能设备只是一系列产品线中小的子集。我们需要去看到小米做AI的几大优势。这是我过去几年一直讲的,小米为什么做AI?做AI的三大优势是什么?

第一有做硬件产品的优势,在中国小米是遥遥领先的,在世界也非常靠前。小米可以做一款非常精致漂亮性价比非常高的手机,可以做一系列有小米设计风格的一系列生态产品,很多产品都成为爆品,轻松的上千万量级,说明小米在硬件上的优势,很多公司苦于落地,小米不用担心。

第二是小米真正大数据的优势,这是我过去几年一直在推的,从云计算到大数据,各种各样的,手机上可以带来很多数据,各种各样的数据,全生态多样性的数据。加上IOT各种设备,小米有了数据,才可以让更多功能变得智能,各种设备变成真正的智能设备。

第三大优势就是小米投入AI再多都不为过的理由,就是我们有丰富的产品线,不仅带来技术落地很多面、很的点,更带来智能场景的创新机会。

所以2016年底,我们已经把AI,作为小米未来核心战略的重要组成部分,作为未来十年、甚至二十年的核心战略。随着AI的投入,我们推出的第一款产品战略级的AI产品就是AI音箱,背后就是大家非常熟悉的小爱同学,小爱同学不仅仅只是音箱上的智能语音交互平台,也不是电视上的智能语音交互平台,它将成为小米围绕手机和IoT生态庞大生态的控制中心。

它的背后,我把它称之为智联万物的AI虚拟助理,后面有很多黑科技。小爱同学背后的黑科技,最近刚被评为十大黑科技之一。这些后面都需要很强的技术支撑,现在大家就可以慢慢联想到,为什么开源对小米如此重要。

过去几年我的团队在技术发展路线,就是从C到B到A,这个我在很多场合都讲过,从云计算到大数据到A,前面联想的同事讲了很多C和B,也有一些A,但开源讲到技术就不得不讲到开源。

六年前我加入小米,我在讲我们必须拥抱开源,雷总也非常看中开源,他曾经讲过任何一家创业公司,如果不拥抱开源,就直接会输在起跑线上。过去几年,我的团队和周边我的兄弟部门都在拥抱开源,我们把拥抱开源,打造成小米工程文化的重要组成部分,为什么选择开源?这个大家都是行业中的,我不用多讲了。

几年前我参加开源世界大会,我讲过一些观点,站在巨人肩膀上,很多尤其大数据、云计算方面的开源系统,开源软件已经成了行业中的事实标准,开源可以提高代码质量,提高工程师的素质,可以带来很多人才库,也可以吸引人才。这些只是开源好处的比较实用主义的一个方面。

六年前我加入小米,就制定了小米开源战略的五个方面,今天为止回头看还不过时。

640?wx_fmt=jpeg

  • 第一个就是快,快速选型、快速融入社区、快速反馈,快是小米模式的重要组成部分;

  • 第二个不重造轮子;

  • 第三个不用则已,要用则精,很多公司只用不精,不能真正驾驭;

  • 第四点就是公司的态度——永远拥抱开放和共享的态度,第四点也是与其他公司不同的。

  • 当然六年后的今天,中国很多企业都在拥抱第五条——在重大的软件项目上、开源软件项目上,要赢得话语权、为社区做贡献,就得降低自己封闭的维护成本,这个和第三条也是息息相关的,不用则已,要用则精。

所以在云计算时代,刚才联想的同志也讲了,我也不用多讲,这些毋庸置疑,每家互联网公司跟云计算、跟互联网服务有一点点关系的公司都离不开开源。

小米在这方面做了比较有代表性的成功的案例,就是在HBase的贡献参与和从零打造。过去两年,这个项目的负责人,在几个场合两三次跟我讲,感谢你们小米对HBase的贡献,你们团队是最强的团队,当然他有部分恭维的因素。我把这些话,当成他对我们小米团队在HBase贡献上的肯定。


回到AI时代,小米要做什么?怎么做?

回到AI时代,小米要做什么?怎么做?回头看我们过去几年团队围绕AI、围绕云计算、大数据积累了一些基础的能力。我们说今天AI的新的春天到来了,背后是因为深度学习。但是四年前、五年前,跟同志们讲不要忘了大数据。今天大家知道大数据在AI中扮演的角色。深度学习、大数据、云计算,是新的AI时代离不开的底层技术,这些都有开源技术的存在。往上一层一层叠加,从感知到应用到开放平台,我们公司所有的跟这些相关的技术,都离不开开源。

640?wx_fmt=jpeg

曾经我有些担心,因为C和B、云计算和大数据开源软件不缺,在AI时代,几年前我有点担心,但是今天我不再担心,为什么?AI巨头在纷纷的拥抱开源,我在硅谷跟Facebook、跟谷歌负责AI的团队带头人、科学家深度交流,他们的答案可能不同,但是我看到一点是共通的,他们要开放开源,快速地打造自己的社区,建立自己在某个领域的竞争优势和领先性。光这一点,就可以让我乐观的估计,开源在AI领域持续会火。

2016年AlphaGo激发了人们对深度学习的新一代AI技术的热情,每家公司都在深度地拥抱AI,AI优先。我们做了什么?继续拥抱开源,我们很快推出小米自己的深度学习云服务、小米Cloud-ML。

640?wx_fmt=jpeg

我们用这个做公司内部的人工智能竞赛,一方面造福了各个业务,一方面打造了云服务的能力。我们支持了几乎所有开源的深度学习框架,这些都是服务端的、云端的AI能力、模型训练能力、推算能力。够还是不够,大家都知道。云上的智能和端上的智能是不同的,是需要相辅相成的,端上我们做什么?

今天我非常高兴、也非常自豪地代表我们团队小米人工智能与云平台团队,也代表小米公司,正式在这个场合,宣布一个新的开源项目,过去在云计算、大数据方面开放了开源,自研了很多产品。

640?wx_fmt=jpeg

小米移动端深度学习框架 —— MACE


今天我要宣布的关于AI的开源项目是什么?MACE,移动端深度学习框架,不知道大家对这个有没有感觉。月初过去印度,拜访了很多印度家庭,看到印度摔跤教练,在家里面看到这么一个武器,名字就叫MACE,我说好巧,跟我们开源项目一模一样的名字。

640?wx_fmt=jpeg

移动端深入学习框架,是干什么的?大家都知道,我刚才讲了小米是一家智能设备公司,很多都是2C的个人设备包括手机,很多推理、很多人工智能的推测能力、推理能力、预测能力,都需要在端上要做,那么在端上怎么做,怎么做得快?这里面可能学问就大了,或者难度就大了,MACE就起这些作用。

640?wx_fmt=jpeg

内部我们去年底2017年12月15号,就已经上线了发布了这款产品,我们支持异构的计算加速,支持TensorFlow、支持高通、MTK、澎湃等芯片。我们希望能打造成业界最好的移动端深度学习框架。

为什么我们要做这款开源项目?我在公司制定开源战略,讲了很多不重造轮子,用市面上有的,开源社区有的,我们当时环顾四周,满足我们需求的真心没有,所以我们要做。

继续拥抱开源的第四大战略,永远拥抱开放与共享的态度,比较一下当时开源的框架有什么不足,为什么我们必须要自己做呢?

640?wx_fmt=jpeg

640?wx_fmt=jpeg

大家看一下TensorFlow Lite,一比较MACE的优势就出来了。我们再看非开源的,我们跟高通有紧密合作关系,他们自己提供的深度学习框架,很大程度上满足不了我们的需求。

再比较一下,难易慢快,支持不支持,卡顿不卡顿,也是我们要自己开发MACE的一个理由。


为什么要开发MACE?

1、AI单摄背景虚化

640?wx_fmt=jpeg

MACE在小米移动端设备上得到广泛的应用,大家用小米手机或者对小米感兴趣的人可能知道,我们最近发布了几款产品都在打造AI像机,用MACE差别大了,用了MACE可以只用1/3的内存,只用原来其他的深度学习框架的1/5的时间充实化时间。

2、智能识别,实时优化。

640?wx_fmt=jpeg

第二个应用场景是智能识别,AI相机智能识别,我们要花5倍的时间,用MACE一样节省大量的时间。

3、图片超分辨率。

640?wx_fmt=jpeg

一个很低分辨率几百乘几百像素的照片,可以还原成高分辨率相片,没有MACE的用户就没法用,滑动的时候会特别慢。用了这个以后,我们把计算细腻度的分化,再加上智能的调度,同时和用户的交互并行,让用户的交互不用任何场景,所以没有MACE根本不可能。

4、图片风格化。

如果不用MACE,风格化一张照片,需要秒级,一秒两秒。用了MACE,我们可以几乎做到实时,几百毫秒。

640?wx_fmt=jpeg

随着MACE的发布,我们同时也发布了一些MACE的Mode 1Zoo,我们会把一些模型开源出去,这就是开源的魅力。我呼吁一下,我们希望一起和中国开源贡献者,打造业界最牛的移动端深度学习框架。

640?wx_fmt=jpeg

我们今天刚刚开源,受到很多开发者的好评,但是大家有意见跟我们提,有bug跟我们提,大家一起来打造。

640?wx_fmt=jpeg

这是最后一张PPT,小米最新的愿景,就是始终坚持做感动人心,价格厚道的好产品,让全球每个人都能享受科技带来的美好生活,这里我想讲的是科技大部分指AI科技,AI后面有大部分的都是开源。谢谢大家。

整理 | 胡巍巍

责编 | 唐小引

 征稿啦!

CSDN 公众号秉持着「与千万技术人共成长」理念,不仅以「极客头条」、「畅言」栏目在第一时间以技术人的独特视角描述技术人关心的行业焦点事件,更有「技术头条」专栏,深度解读行业内的热门技术与场景应用,让所有的开发者紧跟技术潮流,保持警醒的技术嗅觉,对行业趋势、技术有更为全面的认知。
如果你有优质的文章,或是行业热点事件、技术趋势的真知灼见,或是深度的应用实践、场景方案等的新见解,欢迎联系 CSDN 投稿,联系方式:微信(guorui_1118,请备注投稿+姓名+公司职位),邮箱(guorui@csdn.net)。



————— 推荐阅读 —————

点击图片即可阅读

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=gif

640?wx_fmt=gif

展开阅读全文

没有更多推荐了,返回首页