三年后,人工智能将彻底改变前端开发?

点击上方“CSDN”,选择“置顶公众号”

关键时刻,第一时间送达!

近几天,因为阮一峰老师的一条微博,我们看到了这样一个项目:https://weibo.com/1400854834/FE1Tz8TIB?filter=hot&root_comment_id=0

GitHub排行榜上排名第一的项目是:神经网络通过深度学习,自动把设计稿变成HTML代码。在项目作者Emil Wallner看来,三年后,人工智能将彻底改变前端开发,提高prototyping速度,降低构建软件的障碍。

然后,就有网友纷纷跟帖评论,

“这是大好的事情,真心希望通过 AI 能自动将设计稿转换成高质量的前端代码,这样前端工程师们就能去做更有价值和挑战的事,比如数据可视化、图形互动化、产品体验提升等等做不完的事。”

当然,也有反对意见,“并不赞成这个观点。这个工具能做的就是布局和样式,而前端开发之所以能被称为开发,很重要的原因是js的存在。”

先来围观下这位作者在FloydHub上的博客原文,链接:https://blog.floydhub.com/Turning-design-mockups-into-code-with-deep-learning/。

然后,我们还将呈现原作者在GitHub上的代码(链接:https://github.com/emilwallner/Screenshot-to-code-in-Keras)分享出来,希望得到每一个正在和即将从事前端开发的程序员的看法。

Just enjoy it,

目前,自动化前端开发最大的障碍是计算能力,不过,作者认为可以运用当前的深度学习算法以及训练数据以实现前端的自动化。

在既有模型中,作者将通过训练神经网络基于设计模型的图片,进行基本HTML和CSS网站的编写。

在调试过程中,首先是Hello Word版,接着是主神经网络层,最后是训练其归纳能力。

构建过程:

1. 给训练的神经网络提供设计图像

0?wx_fmt=png

2. 神经网络将图像转换成HTML标记

0?wx_fmt=png

3. 渲染输出

0?wx_fmt=png

安装

FloydHub

0?wx_fmt=png

本地

0?wx_fmt=png

文件夹结构

0?wx_fmt=png

Hello World

0?wx_fmt=png

HTML

0?wx_fmt=png

Bootstrap

0?wx_fmt=png

————— 推荐阅读 —————

点击图片即可阅读

0?wx_fmt=png

0?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=jpeg0?wx_fmt=gif

发布了1728 篇原创文章 · 获赞 4万+ · 访问量 1556万+
展开阅读全文

个人开发者如何通过人工智能盈利?

10-23

1. 人工智能大背景和历史。 2. 关于人工智能的知识网络拓扑图及学习路线。 3. 阿尔法狗原理算法深入解析包含: - 阿尔法狗各模块详解:价值判断、专家网络、反向更新、强化学习、快速响应 - 卷积神经网络(分层拆分计算,求无限接近值)+蒙特卡洛树搜索(选重要节点向后推断,得到最优值) 4. 阿尔法狗适用于哪些应用场景以及如何拿来用。 5. 个人如何开发一款人工智能应用。 6. 个人如何利用免费的人工智能工具与平台赚钱。 **实录提要:** - 人工智能发展到什么程度会取代程序猿或者其他行业? - 现在自然语言处理达到什么地步了? - 虽然接触了 3 个月 AI,但是学的比较散,可以推荐一套系统的学习路线吗? - 前端开发转人工智能开发需要从哪方面入手,需要掌握什么技能? - 人工智能怎么检验自己的能力到哪种等级了? - 适合个人开发者的具体的盈利模式及发展方向有哪些? - 学习人工智能开发要求数学掌握到什么程度,没学过高数的同学应该怎样学习? - 移动开发与人工智能结合的场景,因为移动设备计算能力有限,有哪些应用点? - 前端开发和 AI 有什么结合点吗? - 人工智能是否会带来新的商业模式? - 人工智能与硬件、无线电、APP 或小程序有哪些结合应用前景? - 关于自然语言处理,目前世界上有什么前沿的论文或书籍推荐吗? - 盈利模式的话,数据能否成为盈利点,成功的AI项目中,是如何获取训练数据的? - 除了经典的书籍,AI 有哪些高质量论文和论坛可供持续学习? *当前内容版权归码字科技所有并授权显示,盗版必究。[阅读原文](http://gitbook.cn/gitchat/activity/59ed5e07991df70ecd5a01e2)*

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 代码科技 设计师: Amelia_0503

分享到微信朋友圈

×

扫一扫,手机浏览