从《觉醒年代》看如何用Python来绘制可视化仪表盘

作者 | 俊欣       责编 | 欧阳姝黎

有时候大家想把自己绘制好的可视化图片集中到一个页面,整合成仪表盘,集中给同事或者他人来呈现,但又不知道该怎么做,今天小编就来分享一个实用的第三方模块中的方法,而此次用到的数据便是最近大热门的民国历史剧《觉醒年代》的相关数据。被称为是继《走向共和》后的又一部历史神剧。自开播以来,豆瓣上的评分也是从最初的8.3分飙升到9.2分,并且在最近的上海电视节白玉兰奖中获得多项提名。

数据的可视化

Pyecharts中的页面组件Page能够很好地将许多绘制出来的页面组合到一个页面当中去,首先我们先导入需要用到的模块,

import pandas as pd
from pyecharts.charts import Bar, Page
from pyecharts import options as opts
from pyecharts.globals import ThemeType
from collections import Counter
from pyecharts.charts import Pie

首先我们来可视化一下观众的评分分布,从中可以看书,5颗星的评分占到了75%,可见观众们对该剧的评价都是非常的高了,几乎都给出了满分的好评

p = (
      Pie(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC))
          .add("", [list(z) for z in zip(stars_keys_list, stars_values_list)],
               radiu=["40%%", "65%"],
               center=["55%", "50%"])
          .set_global_opts(title_opts=opts.TitleOpts(title="电影评分分布(%)", pos_left="center", subtitle="觉醒年代"),
                           legend_opts=opts.LegendOpts(orient="vertical",
                                                       pos_top="15%",
                                                       pos_left="25%"))
          .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    )
p.render("movie_stars.html")

下面我们来绘制一下剧中的主角被提及的次数,当然可能有一些读者朋友不是特别熟悉该部剧,该剧的历史背景是1915年到1921年这段期间,由李大钊、陈独秀以及胡适领导的新文化运动开始讲起,从可视化出来的结果可以发现于和伟(皇叔)被提及的次数是最多的,哈哈哈

bar = (
  Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMANTIC))
      .add_xaxis(actor_mention_keys_list)
      .add_yaxis("", actor_mention_values_list)
      .set_global_opts(title_opts=opts.TitleOpts(title="主角被提及的次数", subtitle="觉醒年代", pos_left="center"),
                       yaxis_opts=opts.AxisOpts(min_= 0, max_=1800))
)
bar.render("actors_mentions_times.html")

与此同时,小编也统计了一下参与了评论的观众朋友们的地域分布情况,发现的是北京和上海的观众最多,对于历史题材的,党政类型的剧情比较感兴趣,

bar = (
      Bar(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC))
          .add_xaxis(location_keys_list)
          .add_yaxis("", location_values_list)
          .set_global_opts(title_opts=opts.TitleOpts(title="影迷的分布地点", subtitle="觉醒年代", pos_left="center"),
                           yaxis_opts=opts.AxisOpts(min_=0, max_=65)
                           )
)
bar.render("fans_location.html")

而这些观众粉丝们大多也是近几年才刚加入的新用户,大多都集中在2018年至2020年这些时间段,可见为了用户增长,该社区也是花了不少的功夫

最后我们来制作可视化仪表盘,在实例化Page对象之后,就将我们绘制好的作品往里添加即可,

page = Page(layout=Page.SimplePageLayout)
page.add(visualiza_stars(0.8, 0.9, 3.7, 19.3, 75.3),
         visualize_actors_mentions_times(),
         visualize_user_location(),
         visualize_fans_year(),
         review_sentiment_analysis(),
         review_sentiment_score_analysis())
page.render("page_sample1.html")

最后出来的结果如下图所示:

生于2001年的《程序员》曾陪伴了无数开发者成长,影响了一代又一代的中国技术人。时隔20年,《新程序员》带着全球技术大师深邃思考、优秀开发者技术创造等深度内容回来了!同时将全方位为所有开发者呈现国内外核心技术生态体系全景图。扫描下方小程序码即可立即订阅!

加入新程序员读者俱乐部:

  1. 季度会员:https://mall.csdn.net/item/76421?spm=1235995414
  2. 年度会员:https://mall.csdn.net/item/76785?spm=170298316

移动端的同学也可以扫码下方二维码加入

 

相关推荐
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页