网红“AI大佬”被爆论文剽窃,Jeff Dean都看不下去了

在这里插入图片描述
作者 | 夕颜、Just

出品 | AI科技大本营(ID:rgznai100)

近日,推特上一篇揭露 YouTube 网红老师 Siraj Raval 新发表论文涉抄袭其他学者的帖子引起了讨论。揭露者是曼彻斯特大学计算机科学系研究员 Andrew M. Webb,他在 Twitter 上详细列举了Siraj Raval 抄袭的证据,包括内容观点、表格,甚至连方程式编号都照搬了原论文。

Siraj 论文链接:http://vixra.org/pdf/1909.0060v1.pdf

原论文:https://arxiv.org/pdf/1806.06871.pdf

所以在@sirajraval 在昨天的直播中,他提到了他的“最新的神经量子比特论文”。我发现这篇文章其中很大一部分内容剽窃了 Nathan Killoran、Seth Lloyd 和其他共同作者的论文。在所附图片中,红色标记内容是 Siraj 的论文,绿色标记内容是原始论文(Nathan Killoran 等人的论文)。
在这里插入图片描述
在这里插入图片描述
可以看到, Siraj 与 Nathan Killoran 等人的论文存在大量相似之处,甚至图文表格都一模一样。

眼看事情败露,Siraj 迅速在 Twitter 道歉,承认了自己的剽窃行为。
在这里插入图片描述
我看到有人指出我的神经量子比特论文涉嫌部分剽窃(partly plagiarized)。这是真的,我为此深表歉意。我在 1 周内完成了这个视频和论文,以跟上我每周 2 个视频的时间表。我本意是启发其他人进行研究。以后我会放慢脚步,并保证内容更加深思熟虑。

同时,Siraj 表示他已经从他的网站和 YouTube 上删除了这篇论文和相关视频。
在这里插入图片描述
在这里插入图片描述
但是 Andrew M. Webb 并不买账,他对 Siraj 的回应表达了不满,表示“部分剽窃”的说法是虚假的,后者的论文剽窃的是 90% 的内容。

他还喊话 Siraj 的粉丝,像这样的论文很可能是别人或一整支团队花费一年甚至更多的时间才有的成果,而不是一个人 1 周之内做出来的东西。

Andrew 还对 Siraj 的论文内容进行了暗讽,“你能解释下在你剽窃的版本中,“quantum gate(量子门)”和“复杂希尔伯特空间(complex Hilbert space)”这两个专业术语是如何变成“quantum door”和“complicated Hilbert space”的么?你知道这些术语是什么意思么?”

Twitter 下也有人站出来现身说法,控诉自己的劳动成果也曾被 Siraj 如法炮制:

他对我们的项目做了完全相同的事情(剽窃)。我们 4 个人花了几个月做的事情,好像变成他做的了,用他的闲暇时间东拼西凑,就为了完成他忙碌的 YouTube 日程安排。
当然,也有人表示仍然不相信 Siraj 是个骗子,毕竟每个人都会做错事。

但更多的人是像 Reddit 上这位网友一样信念崩塌:

之前,我还以为这个人是个天才,因为他比我的教授了解更多的科目。但是看完他的一两个视频后,我就知道,这对盲目跟随他的学生来说是最大的骗局。他要花 3 个月的时间来学习课程,甚至花了将近一年的时间才弄清最基础的东西。

还有人调侃,Siraj 简直就是机器学习领域的川普…

一个机器学习网红老师的“发家史”

据了解,Siraj Raval 本人是线上教育网站((www.theschool.ai) )的创始人,其在简介中也称自己是一名数据科学家、AI 教育者,说唱歌手、作家、演讲者,其在 YouTube 上拥有近 70 万粉丝。
他在 YouTube 上讲 AI 课程的内容,其中一个视频的最高观看量有 100 万。
在这里插入图片描述
尽管 Siraj 本人发表过论文,但某种程度上,网友认为他并不是一个专业研究学者。

事情发生后,虽然网上一片倒地开骂Siraj,但也有冷静的推特网友表示,如果 Siraj 以后改过自新,以后把 YouTube 视频的重点放在讲解更多科学家的研究上也许能挽回他的声誉,因为很多科学家都乐于支持那些有利于研究成果曝光的工作,这会让所有参与方更多地受益。

还有网友总结了此事件的教训:不要试着成为你不能成为的那种人。出于教育目的,他不必“发表”论文。想促进研究吗?制作“阅读和解释论文”的视频就好了,我觉得 Siraj 确实不需要通过“做研究”来赢得声誉。
在这里插入图片描述

学术剽窃风波不断,如何“正本清源”?

这件事引起了大量关注,Jeff Dean 等人也在推特上对此事进行了转发,让事情进一步发酵。

事已至此,关于被剽窃的论文本身已不是重点,而是转移到了学术研究与非专业领域专家之间的矛盾。在专业的学术领域,网红或者说“外行”对学术传播起到的作用究竟是利大于弊,还是弊大于利?

事实上,这次事件只是冰山一角,关于学术造假、学术剽窃、学术不端背后,还有着更为深层次的痼疾。近年来,这些话题也时不时地出现在新闻头条中。

比如,在 2019 年计算机视觉领域两大顶会 ICCV与CVPR 双双爆出学术不端风波,南开大学程明明教授组被 ICCV 2019 接收的论文受到抄袭质疑,有人指出其摘要部分与另一篇发表于CVPR 2018 的论文摘要相似度非常之高。
在这里插入图片描述

虽然最后 ICCV 鉴定两篇论文的相似度仅为 3%,认定不构成抄袭,但程明明承认学术不端行为确实存在,也再次重申了对这种行为的重视,表示今后将加强对论文的把控。

另一起学术不端风波涉及 CVPR 2019 接收的一篇论文,研究者 Jason Antic 指认这篇论文剽窃了自己的研究成果 Deoldify。
在这里插入图片描述

有趣的是,在被罗列出证据指认抄袭后,剽窃者提出了将 Jason Antic 的名字加入作者的行列中,列在第三位的解决方案。这波操作别说原作者不同意,学术研究界也拒绝这种无理也气壮的行为,纷纷声援 Jason。最后,剽窃者不得不以删除相关论文资料并注销各类账号了事。

以上述三起事件为例,虽然剽窃者在指认证据面前纷纷道歉,也遭受了声誉和研究事业上的损失,一定程度上维护了学术界的“纯净”,但是在实质性惩罚上,比如在顶会上发表论文受限等措施却没有跟上。可以预见,如果没有一个合理的奖惩措施,剽窃者仅是道歉、删稿就草草了事,以后类似事件恐怕还会继续上演。

总之,还 AI 学术界一片净土,社会各界还需努力。你觉得应该如何应对这些学术顽疾呢?欢迎在留言区出谋划策。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页